Python's compiler - from CST to AST
Python's compiler series:
- Python 3.8.0 execution flow
- Python's compiler - from grammar to DFA
- Python's compiler - the grammar file is not LL(1) but the parser is
- Python's compiler - from tokens to CST
- Python's compiler - from CST to AST
- Python's compiler - from AST to code object
- Python's compiler - from code object to pyc file
- Python's compiler - from pyc file to code object
Use ASDL to define AST
Python's AST nodes' data structures are defined using the ASDL (Zephyr Abstract Syntax Definition Language) file Parser/Python.asdl.
The grammar of the ASDL file is:
module ::= "module" Id "{" [definitions] "}"
definitions ::= { TypeId "=" type }
type ::= product | sum
product ::= fields ["attributes" fields]
fields ::= "(" { field, "," } field ")"
field ::= TypeId ["?" | "*"] [Id]
sum ::= constructor { "|" constructor } ["attributes" fields]
constructor ::= ConstructorId [fields]
- Lowercase names are non-terminals.
- Uppercase names are terminals.
- Literal tokens are in double quotes.
[]
means zero or one.{}
means one or more.
Parse ASDL file to ASDL AST
Parser/asdl.py parses the ASDL file to an ASDL AST (not to be confused with Python's AST).
A modified version of Parser/asdl.py that pretty prints the ASDL AST:
#-------------------------------------------------------------------------------
# Parser for ASDL [1] definition files. Reads in an ASDL description and parses
# it into an AST that describes it.
#
# The EBNF we're parsing here: Figure 1 of the paper [1]. Extended to support
# modules and attributes after a product. Words starting with Capital letters
# are terminals. Literal tokens are in "double quotes". Others are
# non-terminals. Id is either TokenId or ConstructorId.
#
# module ::= "module" Id "{" [definitions] "}"
# definitions ::= { TypeId "=" type }
# type ::= product | sum
# product ::= fields ["attributes" fields]
# fields ::= "(" { field, "," } field ")"
# field ::= TypeId ["?" | "*"] [Id]
# sum ::= constructor { "|" constructor } ["attributes" fields]
# constructor ::= ConstructorId [fields]
#
# [1] "The Zephyr Abstract Syntax Description Language" by Wang, et. al. See
# http://asdl.sourceforge.net/
#-------------------------------------------------------------------------------
from collections import namedtuple
import re
__all__ = [
'builtin_types', 'parse', 'AST', 'Module', 'Type', 'Constructor',
'Field', 'Sum', 'Product', 'VisitorBase', 'Check', 'check']
# The following classes define nodes into which the ASDL description is parsed.
# Note: this is a "meta-AST". ASDL files (such as Python.asdl) describe the AST
# structure used by a programming language. But ASDL files themselves need to be
# parsed. This module parses ASDL files and uses a simple AST to represent them.
# See the EBNF at the top of the file to understand the logical connection
# between the various node types.
builtin_types = {'identifier', 'string', 'bytes', 'int', 'object', 'singleton',
'constant'}
def indent(text, step=' '):
return step + ('\n' + step).join(text.split('\n'))
def repr_list(items):
if not items:
return '[]'
lines = []
lines.append('[\n')
for item in items:
item_repr = repr(item)
item_repr = indent(item_repr) + ',\n'
lines.append(item_repr)
lines.append(']')
return ''.join(lines)
class AST:
def __repr__(self):
raise NotImplementedError
class Module(AST):
def __init__(self, name, dfns):
self.name = name
self.dfns = dfns
self.types = {type.name: type.value for type in dfns}
def __repr__(self):
return 'Module({0}, {1})'.format(self.name, repr_list(self.dfns))
class Type(AST):
def __init__(self, name, value):
self.name = name
self.value = value
def __repr__(self):
body_str = indent(repr(self.value))
return 'Type({0}\n{1}\n)'.format(self.name, body_str)
class Constructor(AST):
def __init__(self, name, fields=None):
self.name = name
self.fields = fields or []
def __repr__(self):
return 'Constructor({0}, {1})'.format(self.name, repr_list(self.fields))
class Field(AST):
def __init__(self, type, name=None, seq=False, opt=False):
self.type = type
self.name = name
self.seq = seq
self.opt = opt
def __repr__(self):
if self.seq:
extra = ", seq=True"
elif self.opt:
extra = ", opt=True"
else:
extra = ""
if self.name is None:
return 'Field({0.type}{1})'.format(self, extra)
else:
return 'Field({0.type}, {0.name}{1})'.format(self, extra)
class Sum(AST):
def __init__(self, types, attributes=None):
self.types = types
self.attributes = attributes or []
def __repr__(self):
if self.attributes:
return 'Sum({0},\n{1})'.format(
repr_list(self.types),
repr_list(self.attributes),
)
else:
return 'Sum({0})'.format(repr_list(self.types))
class Product(AST):
def __init__(self, fields, attributes=None):
self.fields = fields
self.attributes = attributes or []
def __repr__(self):
if self.attributes:
return 'Product({0},\n{1})'.format(
repr_list(self.fields),
repr_list(self.attributes),
)
else:
return 'Product({0})'.format(repr_list(self.fields))
# A generic visitor for the meta-AST that describes ASDL. This can be used by
# emitters. Note that this visitor does not provide a generic visit method, so a
# subclass needs to define visit methods from visitModule to as deep as the
# interesting node.
# We also define a Check visitor that makes sure the parsed ASDL is well-formed.
class VisitorBase(object):
"""Generic tree visitor for ASTs."""
def __init__(self):
self.cache = {}
def visit(self, obj, *args):
klass = obj.__class__
meth = self.cache.get(klass)
if meth is None:
methname = "visit" + klass.__name__
meth = getattr(self, methname, None)
self.cache[klass] = meth
if meth:
try:
meth(obj, *args)
except Exception as e:
print("Error visiting %r: %s" % (obj, e))
raise
class Check(VisitorBase):
"""A visitor that checks a parsed ASDL tree for correctness.
Errors are printed and accumulated.
"""
def __init__(self):
super(Check, self).__init__()
self.cons = {}
self.errors = 0
self.types = {}
def visitModule(self, mod):
for dfn in mod.dfns:
self.visit(dfn)
def visitType(self, type):
self.visit(type.value, str(type.name))
def visitSum(self, sum, name):
for t in sum.types:
self.visit(t, name)
def visitConstructor(self, cons, name):
key = str(cons.name)
conflict = self.cons.get(key)
if conflict is None:
self.cons[key] = name
else:
print('Redefinition of constructor {}'.format(key))
print('Defined in {} and {}'.format(conflict, name))
self.errors += 1
for f in cons.fields:
self.visit(f, key)
def visitField(self, field, name):
key = str(field.type)
l = self.types.setdefault(key, [])
l.append(name)
def visitProduct(self, prod, name):
for f in prod.fields:
self.visit(f, name)
def check(mod):
"""Check the parsed ASDL tree for correctness.
Return True if success. For failure, the errors are printed out and False
is returned.
"""
v = Check()
v.visit(mod)
for t in v.types:
if t not in mod.types and not t in builtin_types:
v.errors += 1
uses = ", ".join(v.types[t])
print('Undefined type {}, used in {}'.format(t, uses))
return not v.errors
# The ASDL parser itself comes next. The only interesting external interface
# here is the top-level parse function.
def parse(filename):
"""Parse ASDL from the given file and return a Module node describing it."""
with open(filename) as f:
parser = ASDLParser()
return parser.parse(f.read())
# Types for describing tokens in an ASDL specification.
class TokenKind:
"""TokenKind is provides a scope for enumerated token kinds."""
(ConstructorId, TypeId, Equals, Comma, Question, Pipe, Asterisk,
LParen, RParen, LBrace, RBrace) = range(11)
operator_table = {
'=': Equals, ',': Comma, '?': Question, '|': Pipe, '(': LParen,
')': RParen, '*': Asterisk, '{': LBrace, '}': RBrace}
Token = namedtuple('Token', 'kind value lineno')
class ASDLSyntaxError(Exception):
def __init__(self, msg, lineno=None):
self.msg = msg
self.lineno = lineno or '<unknown>'
def __str__(self):
return 'Syntax error on line {0.lineno}: {0.msg}'.format(self)
def tokenize_asdl(buf):
"""Tokenize the given buffer. Yield Token objects."""
for lineno, line in enumerate(buf.splitlines(), 1):
for m in re.finditer(r'\s*(\w+|--.*|.)', line.strip()):
c = m.group(1)
if c[0].isalpha():
# Some kind of identifier
if c[0].isupper():
yield Token(TokenKind.ConstructorId, c, lineno)
else:
yield Token(TokenKind.TypeId, c, lineno)
elif c[:2] == '--':
# Comment
break
else:
# Operators
try:
op_kind = TokenKind.operator_table[c]
except KeyError:
raise ASDLSyntaxError('Invalid operator %s' % c, lineno)
yield Token(op_kind, c, lineno)
class ASDLParser:
"""Parser for ASDL files.
Create, then call the parse method on a buffer containing ASDL.
This is a simple recursive descent parser that uses tokenize_asdl for the
lexing.
"""
def __init__(self):
self._tokenizer = None
self.cur_token = None
def parse(self, buf):
"""Parse the ASDL in the buffer and return an AST with a Module root.
"""
self._tokenizer = tokenize_asdl(buf)
self._advance()
return self._parse_module()
def _parse_module(self):
if self._at_keyword('module'):
self._advance()
else:
raise ASDLSyntaxError(
'Expected "module" (found {})'.format(self.cur_token.value),
self.cur_token.lineno)
name = self._match(self._id_kinds)
self._match(TokenKind.LBrace)
defs = self._parse_definitions()
self._match(TokenKind.RBrace)
return Module(name, defs)
def _parse_definitions(self):
defs = []
while self.cur_token.kind == TokenKind.TypeId:
typename = self._advance()
self._match(TokenKind.Equals)
type = self._parse_type()
defs.append(Type(typename, type))
return defs
def _parse_type(self):
if self.cur_token.kind == TokenKind.LParen:
# If we see a (, it's a product
return self._parse_product()
else:
# Otherwise it's a sum. Look for ConstructorId
sumlist = [Constructor(self._match(TokenKind.ConstructorId),
self._parse_optional_fields())]
while self.cur_token.kind == TokenKind.Pipe:
# More constructors
self._advance()
sumlist.append(Constructor(
self._match(TokenKind.ConstructorId),
self._parse_optional_fields()))
return Sum(sumlist, self._parse_optional_attributes())
def _parse_product(self):
return Product(self._parse_fields(), self._parse_optional_attributes())
def _parse_fields(self):
fields = []
self._match(TokenKind.LParen)
while self.cur_token.kind == TokenKind.TypeId:
typename = self._advance()
is_seq, is_opt = self._parse_optional_field_quantifier()
id = (self._advance() if self.cur_token.kind in self._id_kinds
else None)
fields.append(Field(typename, id, seq=is_seq, opt=is_opt))
if self.cur_token.kind == TokenKind.RParen:
break
elif self.cur_token.kind == TokenKind.Comma:
self._advance()
self._match(TokenKind.RParen)
return fields
def _parse_optional_fields(self):
if self.cur_token.kind == TokenKind.LParen:
return self._parse_fields()
else:
return None
def _parse_optional_attributes(self):
if self._at_keyword('attributes'):
self._advance()
return self._parse_fields()
else:
return None
def _parse_optional_field_quantifier(self):
is_seq, is_opt = False, False
if self.cur_token.kind == TokenKind.Asterisk:
is_seq = True
self._advance()
elif self.cur_token.kind == TokenKind.Question:
is_opt = True
self._advance()
return is_seq, is_opt
def _advance(self):
""" Return the value of the current token and read the next one into
self.cur_token.
"""
cur_val = None if self.cur_token is None else self.cur_token.value
try:
self.cur_token = next(self._tokenizer)
except StopIteration:
self.cur_token = None
return cur_val
_id_kinds = (TokenKind.ConstructorId, TokenKind.TypeId)
def _match(self, kind):
"""The 'match' primitive of RD parsers.
* Verifies that the current token is of the given kind (kind can
be a tuple, in which the kind must match one of its members).
* Returns the value of the current token
* Reads in the next token
"""
if (isinstance(kind, tuple) and self.cur_token.kind in kind or
self.cur_token.kind == kind
):
value = self.cur_token.value
self._advance()
return value
else:
raise ASDLSyntaxError(
'Unmatched {} (found {})'.format(kind, self.cur_token.kind),
self.cur_token.lineno)
def _at_keyword(self, keyword):
return (self.cur_token.kind == TokenKind.TypeId and
self.cur_token.value == keyword)
The usage:
import asdl
asdl_ast = asdl.parse('Python.asdl')
print(asdl_ast)
The ASDL AST of Parser/Python.asdl:
Module(Python, [
Type(mod
Sum([
Constructor(Module, [
Field(stmt, body, seq=True),
Field(type_ignore, type_ignores, seq=True),
]),
Constructor(Interactive, [
Field(stmt, body, seq=True),
]),
Constructor(Expression, [
Field(expr, body),
]),
Constructor(FunctionType, [
Field(expr, argtypes, seq=True),
Field(expr, returns),
]),
Constructor(Suite, [
Field(stmt, body, seq=True),
]),
])
),
Type(stmt
Sum([
Constructor(FunctionDef, [
Field(identifier, name),
Field(arguments, args),
Field(stmt, body, seq=True),
Field(expr, decorator_list, seq=True),
Field(expr, returns, opt=True),
Field(string, type_comment, opt=True),
]),
Constructor(AsyncFunctionDef, [
Field(identifier, name),
Field(arguments, args),
Field(stmt, body, seq=True),
Field(expr, decorator_list, seq=True),
Field(expr, returns, opt=True),
Field(string, type_comment, opt=True),
]),
Constructor(ClassDef, [
Field(identifier, name),
Field(expr, bases, seq=True),
Field(keyword, keywords, seq=True),
Field(stmt, body, seq=True),
Field(expr, decorator_list, seq=True),
]),
Constructor(Return, [
Field(expr, value, opt=True),
]),
Constructor(Delete, [
Field(expr, targets, seq=True),
]),
Constructor(Assign, [
Field(expr, targets, seq=True),
Field(expr, value),
Field(string, type_comment, opt=True),
]),
Constructor(AugAssign, [
Field(expr, target),
Field(operator, op),
Field(expr, value),
]),
Constructor(AnnAssign, [
Field(expr, target),
Field(expr, annotation),
Field(expr, value, opt=True),
Field(int, simple),
]),
Constructor(For, [
Field(expr, target),
Field(expr, iter),
Field(stmt, body, seq=True),
Field(stmt, orelse, seq=True),
Field(string, type_comment, opt=True),
]),
Constructor(AsyncFor, [
Field(expr, target),
Field(expr, iter),
Field(stmt, body, seq=True),
Field(stmt, orelse, seq=True),
Field(string, type_comment, opt=True),
]),
Constructor(While, [
Field(expr, test),
Field(stmt, body, seq=True),
Field(stmt, orelse, seq=True),
]),
Constructor(If, [
Field(expr, test),
Field(stmt, body, seq=True),
Field(stmt, orelse, seq=True),
]),
Constructor(With, [
Field(withitem, items, seq=True),
Field(stmt, body, seq=True),
Field(string, type_comment, opt=True),
]),
Constructor(AsyncWith, [
Field(withitem, items, seq=True),
Field(stmt, body, seq=True),
Field(string, type_comment, opt=True),
]),
Constructor(Raise, [
Field(expr, exc, opt=True),
Field(expr, cause, opt=True),
]),
Constructor(Try, [
Field(stmt, body, seq=True),
Field(excepthandler, handlers, seq=True),
Field(stmt, orelse, seq=True),
Field(stmt, finalbody, seq=True),
]),
Constructor(Assert, [
Field(expr, test),
Field(expr, msg, opt=True),
]),
Constructor(Import, [
Field(alias, names, seq=True),
]),
Constructor(ImportFrom, [
Field(identifier, module, opt=True),
Field(alias, names, seq=True),
Field(int, level, opt=True),
]),
Constructor(Global, [
Field(identifier, names, seq=True),
]),
Constructor(Nonlocal, [
Field(identifier, names, seq=True),
]),
Constructor(Expr, [
Field(expr, value),
]),
Constructor(Pass, []),
Constructor(Break, []),
Constructor(Continue, []),
],
[
Field(int, lineno),
Field(int, col_offset),
Field(int, end_lineno, opt=True),
Field(int, end_col_offset, opt=True),
])
),
Type(expr
Sum([
Constructor(BoolOp, [
Field(boolop, op),
Field(expr, values, seq=True),
]),
Constructor(NamedExpr, [
Field(expr, target),
Field(expr, value),
]),
Constructor(BinOp, [
Field(expr, left),
Field(operator, op),
Field(expr, right),
]),
Constructor(UnaryOp, [
Field(unaryop, op),
Field(expr, operand),
]),
Constructor(Lambda, [
Field(arguments, args),
Field(expr, body),
]),
Constructor(IfExp, [
Field(expr, test),
Field(expr, body),
Field(expr, orelse),
]),
Constructor(Dict, [
Field(expr, keys, seq=True),
Field(expr, values, seq=True),
]),
Constructor(Set, [
Field(expr, elts, seq=True),
]),
Constructor(ListComp, [
Field(expr, elt),
Field(comprehension, generators, seq=True),
]),
Constructor(SetComp, [
Field(expr, elt),
Field(comprehension, generators, seq=True),
]),
Constructor(DictComp, [
Field(expr, key),
Field(expr, value),
Field(comprehension, generators, seq=True),
]),
Constructor(GeneratorExp, [
Field(expr, elt),
Field(comprehension, generators, seq=True),
]),
Constructor(Await, [
Field(expr, value),
]),
Constructor(Yield, [
Field(expr, value, opt=True),
]),
Constructor(YieldFrom, [
Field(expr, value),
]),
Constructor(Compare, [
Field(expr, left),
Field(cmpop, ops, seq=True),
Field(expr, comparators, seq=True),
]),
Constructor(Call, [
Field(expr, func),
Field(expr, args, seq=True),
Field(keyword, keywords, seq=True),
]),
Constructor(FormattedValue, [
Field(expr, value),
Field(int, conversion, opt=True),
Field(expr, format_spec, opt=True),
]),
Constructor(JoinedStr, [
Field(expr, values, seq=True),
]),
Constructor(Constant, [
Field(constant, value),
Field(string, kind, opt=True),
]),
Constructor(Attribute, [
Field(expr, value),
Field(identifier, attr),
Field(expr_context, ctx),
]),
Constructor(Subscript, [
Field(expr, value),
Field(slice, slice),
Field(expr_context, ctx),
]),
Constructor(Starred, [
Field(expr, value),
Field(expr_context, ctx),
]),
Constructor(Name, [
Field(identifier, id),
Field(expr_context, ctx),
]),
Constructor(List, [
Field(expr, elts, seq=True),
Field(expr_context, ctx),
]),
Constructor(Tuple, [
Field(expr, elts, seq=True),
Field(expr_context, ctx),
]),
],
[
Field(int, lineno),
Field(int, col_offset),
Field(int, end_lineno, opt=True),
Field(int, end_col_offset, opt=True),
])
),
Type(expr_context
Sum([
Constructor(Load, []),
Constructor(Store, []),
Constructor(Del, []),
Constructor(AugLoad, []),
Constructor(AugStore, []),
Constructor(Param, []),
])
),
Type(slice
Sum([
Constructor(Slice, [
Field(expr, lower, opt=True),
Field(expr, upper, opt=True),
Field(expr, step, opt=True),
]),
Constructor(ExtSlice, [
Field(slice, dims, seq=True),
]),
Constructor(Index, [
Field(expr, value),
]),
])
),
Type(boolop
Sum([
Constructor(And, []),
Constructor(Or, []),
])
),
Type(operator
Sum([
Constructor(Add, []),
Constructor(Sub, []),
Constructor(Mult, []),
Constructor(MatMult, []),
Constructor(Div, []),
Constructor(Mod, []),
Constructor(Pow, []),
Constructor(LShift, []),
Constructor(RShift, []),
Constructor(BitOr, []),
Constructor(BitXor, []),
Constructor(BitAnd, []),
Constructor(FloorDiv, []),
])
),
Type(unaryop
Sum([
Constructor(Invert, []),
Constructor(Not, []),
Constructor(UAdd, []),
Constructor(USub, []),
])
),
Type(cmpop
Sum([
Constructor(Eq, []),
Constructor(NotEq, []),
Constructor(Lt, []),
Constructor(LtE, []),
Constructor(Gt, []),
Constructor(GtE, []),
Constructor(Is, []),
Constructor(IsNot, []),
Constructor(In, []),
Constructor(NotIn, []),
])
),
Type(comprehension
Product([
Field(expr, target),
Field(expr, iter),
Field(expr, ifs, seq=True),
Field(int, is_async),
])
),
Type(excepthandler
Sum([
Constructor(ExceptHandler, [
Field(expr, type, opt=True),
Field(identifier, name, opt=True),
Field(stmt, body, seq=True),
]),
],
[
Field(int, lineno),
Field(int, col_offset),
Field(int, end_lineno, opt=True),
Field(int, end_col_offset, opt=True),
])
),
Type(arguments
Product([
Field(arg, posonlyargs, seq=True),
Field(arg, args, seq=True),
Field(arg, vararg, opt=True),
Field(arg, kwonlyargs, seq=True),
Field(expr, kw_defaults, seq=True),
Field(arg, kwarg, opt=True),
Field(expr, defaults, seq=True),
])
),
Type(arg
Product([
Field(identifier, arg),
Field(expr, annotation, opt=True),
Field(string, type_comment, opt=True),
],
[
Field(int, lineno),
Field(int, col_offset),
Field(int, end_lineno, opt=True),
Field(int, end_col_offset, opt=True),
])
),
Type(keyword
Product([
Field(identifier, arg, opt=True),
Field(expr, value),
])
),
Type(alias
Product([
Field(identifier, name),
Field(identifier, asname, opt=True),
])
),
Type(withitem
Product([
Field(expr, context_expr),
Field(expr, optional_vars, opt=True),
])
),
Type(type_ignore
Sum([
Constructor(TypeIgnore, [
Field(int, lineno),
Field(string, tag),
]),
])
),
])
Compile ASDL AST to C code
Parser/asdl_c.py compiles the ASDL AST to Python's AST nodes' C data structures and processing functions, stored in files Include/Python-ast.h and Python/Python-ast.c.
The usage:
python Parser/asdl_c.py -h Include/Python-ast.h Parser/Python.asdl
python Parser/asdl_c.py -h Python/Python-ast.c Parser/Python.asdl
For example, the ASDL AST nodes
Type(mod
Sum([
Constructor(Module, [
Field(stmt, body, seq=True),
Field(type_ignore, type_ignores, seq=True),
]),
Constructor(Interactive, [
Field(stmt, body, seq=True),
]),
Constructor(Expression, [
Field(expr, body),
]),
Constructor(FunctionType, [
Field(expr, argtypes, seq=True),
Field(expr, returns),
]),
Constructor(Suite, [
Field(stmt, body, seq=True),
]),
])
)
are compiled to the C data structures:
enum _mod_kind {Module_kind=1, Interactive_kind=2, Expression_kind=3,
FunctionType_kind=4, Suite_kind=5};
struct _mod {
enum _mod_kind kind;
union {
struct {
asdl_seq *body;
asdl_seq *type_ignores;
} Module;
struct {
asdl_seq *body;
} Interactive;
struct {
expr_ty body;
} Expression;
struct {
asdl_seq *argtypes;
expr_ty returns;
} FunctionType;
struct {
asdl_seq *body;
} Suite;
} v;
};
There are AST node constructor functions defined in Python/Python-ast.c.
And there are constructor macros defined in Include/Python-ast.h. Notice these macros change the corresponding constructor functions' name, e.g. the function name Module
is changed to _Py_Module
.
Convert CST to AST
Python/ast.c::PyAST_FromNodeObject converts a CST to AST, creating AST nodes using these constructor macros:
ast.c--PyAST_FromNodeObject
switch on CST node type
case file_input:
# Grammar rules:
# file_input: (NEWLINE | stmt)* ENDMARKER
# stmt: simple_stmt | compound_stmt
# simple_stmt : small_stmt(';' small_stmt) * [';'] NEWLINE
asdl.c--_Py_asdl_seq_new
for each `small_stmt` or `compound_stmt`:
ast.c--ast_for_stmt
asdl.h--asdl_seq_SET
asdl.c--_Py_asdl_seq_new
for each type ignores:
# Create AST node.
Python-ast.h--TypeIgnore
asdl.h--asdl_seq_SET
# Create AST node.
Python-ast.h--Module
case eval_input:
...
case single_input:
...
case func_type_input:
...
Expose AST to Python code
Python/ast.c also defines the _ast
module, which exposes AST objects to Python code.
Python/Python-ast.c::PyAST_mod2obj converts an AST (C) node to AST (Python) object.
Python/Python-ast.c::PyAST_obj2mod converts an AST (Python) object to (C) node.
The Python function ast.parse parses source code to an AST object.
ast.parse
builtins.compile
bltinmodule.c.h--builtin_compile
bltinmodule.c--builtin_compile_impl
pythonrun.c--Py_CompileStringObject
pythonrun.c--PyParser_ASTFromStringObject
Python-ast.c--PyAST_mod2obj
Comments: